Red. Grzegorz Szczurek, Artur Różański

Grodzisko

Z wczesnej epoki żelaza i wczesnego średniowiecza w Grodzisku

Poznań 2013
Grodzisko z wczesnej epoki żelaza
i wczesnego średniowiecza w Grodzisku
gm. Pleszew, woj. wielkopolskie

Studia i materiały
A fortified settlement from the Early Iron Age and early Middle Ages at Grodzisko, Pleszew commune, Wielkopolska province

Studies and materials

EDITED BY:
Grzegorz Szczurek
Artur Różański

Poznań 2013
Grodzisko z wczesnej epoki żelaza i wczesnego średniowiecza w Grodzisku gm. Pleszew, woj. wielkopolskie

Studia i materiały

Redakcja:
Grzegorz Szcurek
Artur Różański

Poznań 2013
Wydawca: Fundacja Ochrony Zabytków w Poznaniu
ul. Działoszańska 10 ZREMB, lok. 15
61-248 Poznań

Dofinansowano ze środków Ministra Kultury i Dziedzictwa Narodowego
oraz Urzędu Miasta i Gminy Pleszew

Wydawca wykonawczy:
Wydawnictwo i Pracownia Archeologiczna PROFIL-ARCHEO
Magdalena Dziegielewskaa
ul. Jurajska 23, 32-087 Pęłowice
www.pracowniaprofil.pl
e-mail: profil@pracowniaprofil.pl

Redakcja: Grzegorz Szczurek, Artur Różański

Recenzen: dr hab. Maciej Kaczmarek

Projekt okładki: Piotr Kołodziejczyk

Fotografie: Miron Bogacki, Michał Dąbski, Wojciech Śmigielski,
Dariusz Szczurek, Szymon Domagała, Agata Małkowska

Rysunki zabytków: Jarosław Teske

Tablice: Anna Perek

Tłumaczenia angielskie: Agnieszka Tokarczuk-Różańska

Layout: Magdalena Dziegielewskaa

Skład i łamanie: Magdalena Dziegielewskaa

Korekta: zespół, Grzegorz Szczurek Artur Różański

Nakład 300 egz.

Spis treści

Od Redakcji.. 7

Hanna Kόčka-Krenz
Wstęp.. 9

Wojciech Śmigielski, Grzegorz Szczurek
Wyniki badań wykopiskowych przeprowadzonych w 1973 roku na grodzisku ludności kultury lużyckiej w Grodzisku... 11

Jarosław Teske, Artur Róžański, Grzegorz Szczurek
Wyniki badań wykopiskowych przeprowadzonych w latach 2004–2005 na grodzisku z wczesnej epoki żelaza i wczesnego średniowiecza w Grodzisku..... 49

Marta Osypińska
Szczątki zwierzęce z badań wykopiskowych na stanowisku nr 1 w Grodzisku... 85

Wiesław Małkowski, Grzegorz Szczurek, Miron Bogacki
Badania nieinwazyjne grodziska z wczesnej epoki żelaza i wczesnego średniowiecza w Grodzisku... 103

Agnieszka Skorupińska
Grodzisko nad Prosną – średniowiecze.. 127

Michał Bugaj
Grodziska w zasobach dziedzictwa archeologicznego kraju – uwagi na temat wartości, rozpoznania, ochrony i zarządzania tego rodzaju zabytkami.............. 135
Od Redakcji

W pierwotnym zamierzeniu niniejsza publikacja miała mieć charakter monografii osady obronnej w Grodzisku. Gruntowna analiza materiałów oraz dokumentacji z dotychczasowych badań zweryfikowała jednakże te ambitne plany, jednoznacznie wskazując, że byłoby to działanie przedwczesne. Z tych względów w prezentowanym tomie przyjęto formułę zbioru artykułów poświęconych temu interesującemu obiektowi, dotychczas funkcjonującemu na marginesie dyskusji naukowej. Wyrażamy nadzieję, że przygotowana praca przyczyni się do zmiany tego niekorzystnego stanu, a studia nad tym zabytkiem będą w następnych latach kontynuowane.

Ufamy, że przygotowany tom i działania zrealizowane w trakcie grodziskiego zadania, poza aspektem naukowym, będą mieć także swój pozytywny wkład w popularyzację tego unikalnego stanowiska archeologicznego wśród lokalnej społeczności.

Zarówno badania nieinwazyjne grodziska, jak i niniejsza publikacja mogły dojść do skutku dzięki dofinansowaniu uzyskanemu ze środków Ministra Kultury i Dziedzictwa Narodowego oraz Urzędu Miasta i Gminy Pleszew.
Wstęp
Hanna Kóčka-Krenz

Badania wykopalskie Wojciecha Śmigiel skiego w 1973 r. na tym stanowisku przyniosły informacje dotyczące sposobów budowy wałów grodu, obfity zbiór ceramiki ludności kultury luźynkowej, oraz niewielką ilość fragmentów naczyń wczesnośredniowiecznych, nie dostarczyły jednak danych, które pozwoliłyby zrekonstruować kształt umocnień obronnych grodu halszackiego oraz grodu wczesnośredniowiecznego, uściślić ich datowanie czy określić elementy ich wewnętrznej zabudowy. Rekapitulacja rezultatów tych badań poświęconych został rozdział piętra Wojciecha Śmigiel skiego i Grzegorza Szczurka, którzy ograniczyli się do omówienia pozyskanych wówczas materiałów wraz z określeniem ich chronologii, nie rozpatrując szerzej kwestii osadnictwa z okresu halszackiego w okolicach Pleszewa. Jest to ograniczenie zamierzone, gdyż zagadnienie osadnictwa w późnej epoce brązu i wczesnej epoce żelaza jest przedmiotem osobnych studiów Grzegorza Szczurka i dopiero wyniki jego dociekań przyniosą pełen obraz sytuacji kulturowej, w której funkcjonował omawiany gród. Tym niemniej pozyskane materiały źródłowe postawiły przed archeologami szereg pytań badawczych, na które nie uzyska no wówczas satysfakcjonujących odpowiedzi.

opracowania Marty Osypińskiej. Omówienie wyników tych analiz zawiera istotne obserwacje, zarówno co do diety mieszkańców grodu, jak i do sposobów użytkowania przez nich zwierząt.

Nowym etapem w rozpoznawaniu tego stanowiska były przeprowadzone ostatnio badania metodami nieinwazyjnymi, których efekty zostały omówione przez Wiesława Małkowskiego, Grzegorza Szczurka i Mirona Bogackiego. Wykonawcy tych badań nie ograniczyli się do penetracji samego grodziska, ale objęli nią także otaczający je obszar. Dzięki temu uzyskano ważne dane dotyczące pierwotnego ukształtowania terenu, na którym posadowiony został gród, a zwłaszcza sposobu komunikowania się jego mieszkańców z okolicą i lokalizacji przypuszczalnych reliktów drewnianych konstrukcji. Badania te pozwolą zarazem na efektywne planowanie przyszłych badań wykopaliskowych.

Wagę rozmaitego charakteru badań dotyczących obiektów o własnej formie terenowej, a zwłaszcza problemów związanych z ich ochroną i ukazanie tkwiących w nich możliwości edukacyjnych, uwypukla tekst Michała Bugaja, uświadamiający wyjątkowy charakter tych, najczęściej podlegających destrukcji, dzieł aktywności budowlanej mieszkańców Wielkopolski w pradziejach i we wczesnym średniowieczu. Niezwykle interesujące są późniejsze dzieje wsi Grodzisko, oparte na przekazach źródłowych, zebranych i zinterpretowanych przez Agnieszkę Skorupińską. Jej spostrzeżenia uświadamiają potrzebę uzupełnienia wymowy źródeł pisanych badaniami archeologicznymi nad początkami grodzkiej parafii, związanymi zwłaszcza z budową jej kościoła.

Badania nieinwazyjne grodziska z wczesnej epoki żelaza i wczesnego średniowiecza w Grodzisku

Wiesław Małkowski, Grzegorz Szczurek, Miron Bogacki

Badania nieinwazyjne grodziska z wczesnej epoki żelaza i wczesnego średniowiecza w Grodzisku. W artykule zaprezentowano wyniki nieinwazyjnego rozpoznania archeologicznego grodziska z wczesnej epoki żelaza i wczesnego średniowiecza w Grodzisku, gm. Pleszew, woj. wielkopolskie. Zakres przeprowadzonych badań obejmował prospekcję geofizyczną całego grodziska i części terenów przyległych (łącznie ok. 4,5 ha), pomiary geodezyjne (także mikroreliefy terenu), wykonanie ortofotomapy w oparciu o serię fotografii lotniczych, trójwymiarowego modelu terenu, wirtua nej panoramy okolic grodziska. Zarejestrowane anomalie geofizyczne i czyste wyznaczniki wilgotnościowe, skorelowane z wynikami wcześniejszych badań wykopalskich, dały podstawy do sformułowania roboczych hipotez odnośnie parametrów ob ekstu w kolejnych fazach osadniczych, rodzaju zabudowy wnętrz i układu komunikacyjnego (droga, brama).

Non-invasive investigation of a fortified settlement of the Early Iron Age and Early Middle Ages in Grodzisko. This paper presents the results of non-invasive archaeological investigations of a fortified settlement of the Early Iron Age and Early Middle Ages in Grodzisko, Pleszew Commune, Wielkopolska Province. The research included geophysical survey of the whole fortified site and part of the area around it (about 4,5 ha), surveying (including land microrelief), making an orthophotograph based on a series of aerial photographs, constructing a three-dimensional land model, a virtual panorama of the area around the fortified settlement. The registered geophysical anomalies and distinct dump marks correlated with the results of earlier excavations provided a basis for the formulation of working hypotheses regarding the parameters of the fortified settlement in subsequent settlement phases, type of development within its interior and the communication system (road, gate).

Wstęp

Celem działań, podobnie jak to miało miejsce kilka lat wcześniej w przypadku nowatorskich badań osady obronnej w Wicinie, gm. Jasięń, pow. żarski, woj. lubuskie (Bugaj 2012, 135–147), było sporządzenie nowoczesnej dokumentacji zabytku i kompleksowe rozpoznanie charakteru nieniszczącym ¹.

Sprzęt i metodyka prac terenowych

Nieinwazyjna prospekcja archeologiczna, na którą składał się rekonesans lotniczy, geofizyczne pomiary magnetometrem, pomiary z użyciem systemu lokalizacji GPS RTK, została przeprowadzona w celu zagregowania w jednym systemie danych dotyczących osady obronnej w Grodzisku.

Wyniki rozpoznania – w postaci rastrowej, wektorowej oraz baz danych geoprzestrzennych

¹ Wyniki przeprowadzonych badań w formie filmowej są prezentowane na stronie internetowej http://www.youtube.com/watch?v=YPDA9f1yG0
– zostały opracowane w formatach map 2D i modeli 3D przygotowanych z kompletem informacji do przetwarzania jako warstwy w Systemie Informacji o Terenie SIT, według reguł stosowanych przy zarządzaniu Systemami Informacji Geograficznej GIS.

Rekonesans lotniczy

Charakteryzując kolejne etapy działań, należy zacząć od opisu fotografii lotniczych, wykonanych z użyciem przystosowanego do tego celu, zdalnie sterowanego wielowirnikowca – okoptera. Przyrząd, o średnicy ok. 1 m i wadze ok. 3 kg, wyposażony w osiem silników elektrycznych oraz elektronikę opartą m.in. na mikroprocesorze, czujniku barometrycznym, żyraskopach, odbiorniku GPS oraz akcelerometrach, pozwala na uniesienie aparatu fotograficznego marca Canon 5D Mark II wraz z obiektywem 24 mm, f/2.8. Dzięki fotografowaniu nie został wybrany przypadkowo. W celu uzyskania jak najlepszego efektu wybrano termin, w którym słońce za chmurami równomiernie oświetlało badany teren, a wiatr nie przekraczał 5 m/s. Fotografujący-operator miał możliwość dowolnej zmiany położenia okoptera, przy stałej transmisji obrazu nadawanego z aparatu do konsoli zdalnie sterującej. Aparat umieszczony w ramie został przystosowany do wykonywania zdjęć pionowych oraz skosowych, w zależności od potrzeb. Stały podgląd obrazu, wykorzystujący bezprzewodową transmisję danych z okoptera do konsoli sterującej, umożliwia operatorowi dokładną kontrolę położenia geograficznego, a także wysokości lotu z dokładnością do 2 metrów, a przez to wybór odpowiednich kadrów do fotografii. Zależy pionowe, jak i ukośne zdjęcia lotnicze stanowią oryginalną, bardzo ceną dokumentację źródłową. Jednak ze względu na wady optyczne obiektywów i odchyłki perspektywiczne aparat nie nadają się do wykonywania na nich pomiarów. Dlatego fotografie przetworzone w oprogramowaniu fotograficznym do formy numerycznego modelu pokrycia terenu, a następnie do formatu ortofotomapy.

W celu uzyskania poprawnej lokalizacji geograficznej modeli i ortofotomap wykonany został pomiar GPS RTK fotopunktów wcześniej rozłożonych na terenie stanowiska. Wyniki pomiaru GPS wprowadzono następnie jako wartości lokalizacyjne do systemu fotograficznego. Dzięki temu można było również obliczyć stopień dokładności całego procesu fotograficznego. W wyniku przetworzenia zdjęć z użyciem oprogramowania uzyskano produkt w postaci numerycznego modelu pokrycia terenu (NMPT). Model ten, pokryty teksturą z wykonanych zdjęć pionowych, nabrał kartometrycznego i zaznaczone fotorealistycznego kształtu i został zapisany w postaci cyfrowej w wielu formatach danych. Skorzystano m.in. ze standardowych plików 3D, takich jak VRML czy OBJ, a dodatkowo wykonany został zapis tzw. chmury punktów (ang. point cloud) xyz. Drugi etap przetworzenia fotograficznego, czyli ortofotomapy, zapisano w standardzie georeferencyjnym GeoTiff. To pozwoli na późniejsze użycie tych informacji w celu przetwarzania i analizy przestrzennych w kompatybilnym oprogramowaniu, bazującym na narzędziach GIS.

Pomiary magnetometrem cezowym lokalizowane za pomocą GPS RTK

Prospekcja geofizyczna została wykonana magnetometrem cezowym z użyciem systemu lokalizacji GPS RTK. Do badań użyto magnetometru cezowego G858 Magmapper (Geometrics) i dwuodbiornikowego zestawu GPS RTK TOPCON HiPER pro. Uzupełniające wybrane odcinki przebiegały z wykorzystaniem gradientometru
Ryc. 2. Grodzisko, gm. Pleszew, stan. 1. Model wysokościowy osady obronnej (wyk. M. Bogacki, W. Małkowski)

Fig. 2. Grodzisko, Pleszew commune, site 1. Elevation model of the fortified settlement (by M. Bogacki, W. Małkowski)

Fig. 3. Grodzisko, Pleszew commune, site 1. Digital, three-dimensional model of the fortified settlement (by M. Bogacki, W. Małkowski)
transduktorowego jednoosiowego (fluxgate) Grad 601-2 Dual firmy Bartington.

Prace pomiarowe realizowane były na całym obszarze w siatce profilii rozmieszczonych w odstępowych jednometrowych, w kierunku północ-południe. Zastosowany został wariant jednokierunkowej prospekacji z rozdzielczością 10 próbek na sekundę (10 Hz), prowadzonej z południa na północ z półmetrowym rozstawem sond.

W celu opracowania map i modeli 3D zastosowano układ współrzędnych 1992 (EPSG: 2180) przeliczony z projekcji Universal Transverse Mercator (UTM). Pomiary wysokościowe były realizowane w systemie odniesienia do
układu Kronsztadt 86. Dla zwiększenia precyzji lokalizacji w pierwszej kolejności wyznaczono punkty osnowy roboczej, korzystając z systemu ASG EUPOS, podłączając się do stacji wirtualnej NAWGEO VRS_3_1, a także kontrolnie do pojedynczych stacji referencyjnych w Kaliszu i Koninie.

W celu opracowania danych użyto oprogramowania do modelowania powierzchni oraz systemów bazujących na narzędziach CAD i GIS. Podczas przetwarzania wyników pomiaru użyto następujących oprogramowań:

- MagMap2000 (transmisja danych – plików źródłowych, konwersja i zapis ASCII)
- Winkalk (obliczenia geodezyjne i transformacja układów współrzędnych)
- Surfer (opracowanie danych do formatu modeli 3D, analiza graficzna i przestrzenna, tworzenie map tematycznych)
- AutoCAD (szczegółowe kreślenie obiektów geometrycznych, wymiarowanie oraz integracja danych)
- Quantum GIS (analiza przestrzenna, opracowanie graficzne wyników).

Dane pozyskane wskutek bezpośredniego pomiaru dostarczają precyzyjnie zlokalizowanych informacji o rozkładzie wartości całkowitego wektora natężenia pola magnetycznego. W wyniku przetworzenia danych i analizy informacji z prospekci magnetycznej uzyskano aktualną wiedzę o stanie zachowania grodziska pod kątem charakterystyki i występowania anomalii magnetycznych. Mapę magnetyczną interpretowano też w kontekście ortofotomapy, wykonanej na bazie fotografii lotniczej oraz numerycznych modeli wysokościowych. Na przebadanym obszarze zarejestrowano anomalie charakterystyczne dla obiektu typu grodzisko, przede wszystkim struktury liniowe, których parametry, takie jak długość, obwód czy powierzchnia, mogą być precyzyjnie zmierzone. Wnioski płynące z analizy przeprowadzonych badań, poza oczywistymi walorami naukowymi, mają także charakter wskazówek dla decyzji dotyczących objęcia ochroną konserwatorską całego obszaru stanowiska, zarówno grodziska, jak i terenów bezpośrednio przyległych.

Obszar przebadany metodą magnetyczną liczy ok. 4,5 ha i został podzielony na dwie części. Zaprezentowany zakres (ryc. 6 i 7) przedstawia cały rejon badań. W rzeczywistości teren jest rozdzielony kanałem melioracyjnym,
oddzielającym obszar grodziska (ok. 3 ha) – działkę nr 163 – od terenu przebadanego na przylegających łąkach (ok. 1,5 ha), położonego na północny-wschód od grodziska (część działek 155, 156, 157), w kierunku współczesnej zabudowy wsi.

Bezpośredni wpływ na wyniki prospekcji geofizycznej mają stan zachowania obiektu, charakter zabytkowych konstrukcji oraz głębokość zalegania nawarstwień kulturowych (Misiewicz 2006, 31–35). Uwarunkowania analizowanego obiektu zostały szczegółowo przeanalizowane w niniejszy tomie (Śmigielski, Szczurek, w tym tomie; Teske, Różański, Szczurek, w tym tomie), co zwalnia autorów od ponownego omawiania tego zagadnienia. Tytułem podsumowania, w kontekście czytelności anomalii geofizycznych należy podzielić zdanie o relatywnie dobrym stanie zachowania reliktów osady obronnej, czemu służy cały zespół czynników, zwłaszcza zaś wysoki poziom wód gruntowych.

Zastosowany przyrząd – magnetometr cezoowy G858 rejestrował dane wartości całkowitego wektora natężenia pola magnetycznego dla równolegle rozmieszczonych dwóch sond. W efekcie zebranych wartości, możliwe było przeliczenie pseudo-gradientu składowej poziomej całkowitego wektora natężenia pola (ryc. 10). Wynikiem prospekcji są mapy i modele 3D, przedstawiające aktualny stan zachowania badanego obszaru pod kątem anomalii magnetycznych.

Na kolejnym etapie opracowania wykonana została integracja zebranych/przetworzonych informacji, polegająca na tworzeniu wielowarstwowego modelu numerycznego dla badanego obszaru. Wydzielone linie nieciągłości natężenia naturalnego pola magnetycznego Ziemi (ryc. 8) uchytelnią plan zabudowy kolejnych faz osady, umożliwiając szczegółowe pomiary z użyciem narzędzi CAD.

Na planie wyróżniają się zmiany punktowe, tzw. anomalie dipolowe, charakteryzujące się silną polaryzacją biegunów. Te anomalie, mające geometrię pojedynczych punktów o wyraźnych biegunach wartości pola, są związane z obecnością obiektów metalowych (ferromagnetyków), zdeponowanych pod powierzchnią gruntu pod różnym kątem. Przedmioty te rozpoznawalne są jako spójne, koncentryczne, punktowe zmiany z biegunami maksimum/minimum na różnych
kierunkach względem osi NS, co spowodowane jest masą i rodzajem depozytu oraz charakterykiem jego położenia pod powierzchnią gruntu.

Podczas poszukiwań pozostałości solidnych konstrukcji architektury obronnej, wyróżnia się złożone anomalie liniowe, które charakteryzuje logiczny, kierunkowy ciąg zmian pola. Na badanym obszarze wyróżniono co najmniej 14 takich anomalii (ryc. 9), w części zamykających konkretne przestrzenie, dzięki czemu możliwe jest obliczenie powierzchni, którą ograniczają. Wykaz zarejestrowanych anomalii liniowych, z dużą dozą prawdopodobieństwa związanych z dawnym gredem, prezentuje się następująco:

1. Anomalia liniowa o obwodzie 340 m i powierzchni 0,6576 ha;
2a. Anomalia liniowa o obwodzie 426 m i powierzchni 1,1742 ha;
2b. Anomalia liniowa o obwodzie 476 m i powierzchni 1,5470 ha;

Fig. 9. Grodzisko, Pleszew Commune, Wielkopolska Province. Values distribution map of the total vector of magnetic field strength, interpretation of anomalies (by W. Małkowski, G. Szczurek)

3. Anomalia liniowa o obwodzie 569 m i powierzchni 2,3059 ha (pokrywająca się zasadniczo z granicami rozsypiska całego grodziska);
4a. Anomalia liniowa o obwodzie 202 m i powierzchni 0,3030 ha;
4b. Anomalia liniowa o obwodzie 323 m i powierzchni 0,7830 ha;
5a. Anomalia liniowa o długości 242 m;
5b. Anomalia liniowa o długości 110 m;
6. Anomalia liniowa o szerokości 4 m i długości 24 m;
7. Anomalia liniowa o długości 134 m i szerokości 9 m;
8. Anomalia liniowa o długości 11 m i szerokości 9 m;
9. Anomalia liniowa o długości 33 m;
10. Anomalia liniowa o długości 47 m.

Podkreślenia wymaga fakt, że w południowej części grodziska nie została zarejestrowana anomalia pokrywająca się z hipotetycznym przebiegiem drewnianego jądra wału badanego w 1973 r. Niespalona konstrukcja rusztowa nie znalazła odzwierciedlenia w odmiennym natężeniu pola magnetycznego. Rozpoznany wykopališkowo odcinek wału mieści się pomiędzy sugerowaną lokalizacją strefy mieszkalnej (powierzchnia

Fig. 10. Grodzisko, Pleszew Commune. Values distribution map of pseudogradient of the horizontal component of the total vector of magnetic field strength (by W. Małkowski)
zawierająca się pomiędzy przebiegiem anomalii 1a i 2a; patrz dalej) a anomalią linioową 3 i częściowo 5a i 5b (ryc. 9). Podobnie zwarte, wielofazowe konstrukcje drewniane szerokości średnio ok. 20 m, zalegające pod wałem członu drugiego (strona północna), są czytelne w formie anomalii geomagnetycznych jedynie przy granicy zewnętrznej (anomalia 4b) i wewnętrznej (anomalia 4a), gdzie wystąpiły nadpalone relikty konstrukcji drewnianych wraz z przepalonymi, zaglinionymi piaskiem (ryc. 9, 12).

Sprzęt geofizyczny zarejestrował także struktury odpowiadające lokalizacji wykopów archeologicznych założonych w ostatnim czterdziestolecu. Bardzo czytelne są anomalie wskazujące na rozmieszczenie wykopów w 1990 r., przy zaledwie sygnalizacyjnym zarysowaniu struktur występujących w miejscu wykopów eksplorowanych w 1973 r. Podobnie produktowo wykopów z lat 2004–2005, usytuowanych w nowożytnym obniżeniu pomiędzy członami, gdzie głęboka orka naruszyła już drewniane konstrukcje podstawy wału, spa
dowodowała, że ich układ nie znalazł wyraźnego odzwierciedlenia w odnotowanych anomaliiach geofizycznych.

Po przetworzeniu wyników zdjęć z rekonesansu lotniczego, czego rezultatem są: trójwymiarowy model pokrycia terenu (ryc. 3) oraz ortofotomapa (ryc. 6),.uczytnił się m.in. wyróżnik roślinny na północny wschód od terenu grodziska, na łąkach pomiędzy kanałem melioracyjnym a terasą po

adzalewową Prosny, na której koncentruje się aktualnie zabudowa wsi.

Czytelna odmienność wegetacyjna roślinności o układzie liniowym została już zaobserwowana wcześniej, podczas prospekcji lotniczej w grudniu 2012 r. (ryc. 11).

Ustalenia przeprowadzone metodą wywiadu bezpośredniego z rolnikami używającymi część przyлегłych do grodziska łąk wskazywały, że podczas wcześniejszych zabiegów agrotechnicznych miało miejsce wyrywanie drewnianych bełek.

Numeryczny model terenu – LIDAR

2 Dane do sporządzenia modell prezentowanych w niniejszym opracowaniu pochodzą z CODGIK, państwowego zasobu geodezyjnego.

Fig. 12. Grodzisko, Pleszew Commune, Wielkopolska Province. Composite plan of trench A from 1990 excavations in the context of magnetic map from 2013 (by W. Małkowski)
Ryc. 13. Numeryczny model pokrycia terenu LIDAR okolic osady obronnej w Grodzisku, gm. Pleszew, woj. wielkopolskie

Fig. 13. LIDAR numerical model of land cover of the area around the fortified settlement in Grodzisko, Pleszew Commune, Wielkopolska Province

Fig. 14. Grodzisko, Pleszew Commune, Wielkopolska Province. Numerical model of land cover north-west of the fortified settlement (by W. Małkowski)

Fig. 15. Grodzisko, Pleszew Commune, Wielkopolska Province. Distribution map of the total vector of magnetic field strength of the area north-west of the fortified settlement (by W. Małkowski)

Fig. 16. Grodzisko, Pleszew Commune, Wielkopolska Province. Composite plan of trench A from 1973 excavations in the context of the magnetic map from 2013 (by W. Małkowski)
Teren otaczający grodzisko stanowi starorzecze rzeki Prosyny, przy czym o szerokości dawnego koryta rzeki może świadczyć wspomniany wyróżnik roślinny, widoczny na ortofotomapię (ryc. 6). Analiza numerycznego modelu pokrycia terenu daje przesłanki do wnoszenia w zakresie pierwotnych parametrów piaszczystej łachy, na której wzniesiono osadę obronną. Prawdopodobnie jest, że akumulacyjne wyniesienie zajmowało większą powierzchnię, uszczuploną następnie poprzez pozyskiwanie surowca niezbędnego do budowy kolejnych wałów.

Rysująca się na ląkach przylegających do grodziska anomalia liniowa (czytelnie także na modelu wysokościewym – ryc. 2) może w opinii autorów przemawiać za zalezaniem pod powierzchnią ziemi drewnianych (7) reliktów kolejnego obwodu obronnego lub, co bardziej prawdopodobne, pozostałości drogi zapewniającej dostęp do grodu od strony terasy nadzalewowej. Analiza geomorfologiczna terenów przyległych do grodziska wskazuje, że jest to miejsce naturalnie przestynowane do sytuowania przepawy przez niedostępne tereny podmokle zabagnione, otaczające wyniesienie, na którym posadowiono osadę obronną. Znaleźcza skraj piaszczystej łachy o korzystniejszych uwarunkowaniach geotechnicznych, układającej się półkoliście wzdłuż wałów, wydaje się być miejscem właściwym do lokalizacji układu komunikacyjnego typu grobla, zbudowanego w konstrukcji drewniano-kamiennezimieniem. Za tą hipotezą przemawiają dodatkowo lokalizacje przerw w obwodzie założeń obronnych (ryc. 9), anomalia nr 6 i 9, które wstępnie można interpretować jako prawdopodobne miejsca sytuowania otworu bramnego (pastrz dalej), a także czynności obronne. Zaproponowany przebieg drogi, w odległości ok. 30 m od lica wałów, wyróżnia się wysokimi walorami obronnymi, umożliwiając dostęp do grodu wyłącznie od prawej, odsłoniętej strony. Dopiero bliżej wejścia, jak miało to miejsce np. w Izdebinie, gm. Rogowo, pow. ziemińskim, woj. kujawsko-pomorskim (Szanamek 2009, 91), droga być może o charakterze pomostu mogła zostać ukierunkowana prostopadle względem hipotetycznych wrót. Planowane w najbliższej przyszłości badania geofizyczne, mające objąć cały teren przyległy do grodziska, mogą przynieść w tym zakresie dalsze istotne obserwacje. Szczególnie ważne wydaje się być rozpoznanie obszaru położonego na zachód od obiektu, gdzie wcześniej notowano (m.in. podczas zakładania uprawy leśnej) występowanie drewnianych elementów, stanowiących być może relikty dawnych konstrukcji. Jest to strefa, w której, zgodnie z XIX-wiecznym planem i opisem obiektu autorstwa W. Schwartzta (Schwartz 1879, 16, tab. 3), usytuowana była nowożytna (?) grobla przylegająca do grodziska. Jest wiele prawdopodobne, że zupełnie niezwykła dziś w terenie konstrukcja stanowiła część pierwotnego układu komunikacyjnego prowadzącego do grodu.

W północno-zachodniej części anomalii liniowych nr 4b i 4a, interpretowanych w oparciu o materiał wykopalski jako obraz konstrukcji wałów wczesnośredniowiecznych i z okresu halsztańskiego, zaobserwowano dwie przerwy o szerokości 4 m (anomalia nr 6) i 9 m (anomalia nr 8). Są to jedyną tak wyraźne luki w zwartych układach obronnych, nie będące następcem wcześniejszych badań archeologicznych, co składa w dniu ostatecznej interpretacji jako otwór bramnego. Niestety, obecne badania nie objęły swoim zasięgiem terenu bezpośrednio przylegającego do grodziska, w związku z czym nieznanie jest przedpole, na którym można by się spodziewać np. ewentualnych konstrukcji typu „szyja”, tak charakterystycznych dla większości wielkopolskich osad obronnych z wczesnej epoki żelaza (Szanamek 2009, 91).

Osobnego omówienia wymaga interpretacja czytelnej odmienności natężenia pola magnetycznego, zawartej pomiędzy anomaliami liniowymi 1 i 2a. Jest to strefa rozpoznana wykopalskiowo w trakcie badań z 1973 r. na działkach IV i częściowo III, w obrębie wykopu A. Wskazana przestrzeń pokrywa się zasadniczo z warstwą IVB, przesyczoną w strefie stopowej drobnych węglankami, które są źródłem uchwyconej

Fig. 17. Grodzisko, Pleszew Commune, Wielkopolska Province. Composite plan of trenches 1–3 from 2004–2005 excavations in the context of magnetic map from 2013 (by W. Małkowski)
zmiany natężenia pola magnetycznego o regularnej formie, koncentrującej się wzdłuż konstrukcji wałów obronnym. W tym kontekście bardziej zasadnie wydaje się hipoteza o prawdopodobnej regularności zabudowy osady w Grodzisku w okreść halsztackim (Śmigielksi, Szczurek, w tym tomie). Wyróżnionej anomalii o średniej szerokości od 10 do 15 m można próbować przypisać charakter reliktów strefy mieszkalnej skupionej wzdłuż głównego obwodu obronnego (ryc. 16). Brak wyraźnych obiektów na zbadanym wykopališkowosko odcinku może wskazywać na ewentualność zastosowania konstrukcji zrębowej, która jest zazwyczaj trudno uchwytne w trakcie eksploatacji warstw, a w rozpatrywanym przypadku uległa spaleniu, na co wskazuje wspomniane, bardzo intensywne nasycenie warstwy węgielkami. Przyjmując za zasadną taką próbę interpretacji, powierzchnia pustego magdajenu, z uwzględnieniem znieszczonej zabudową wczesnośredziewniczą (wał, przekopa – ryc. 9, anomalia nr 7) strefa północną obiektu, obejmowała 6756 m² (pole powierzchni zamknięte zarysem anomalii nr 1). Powierzchnia całego wnętrza grodu, wyznaczonego przez przebieg wewnętrznej granicy drewnianej konstrukcji wału wynosiła 11 742 m² (anomalia nr 2a). Taki model zagospodarowania przestrzeni wnętrza znany jest z halsztackich osad obronnym w Jankowie, gm. Pakość, pow. inowrocławski, woj. kujawsko-pomorskie i Komicrowie, gm. Kaźmierz, pow. szamotulski, woj. wielkopolskie (Szmałek 2009, 92).

Jeśli natomiast przyjąć, że koncepcja prostej zamknięcia obwodu obronnego pojawia się dopiero w kolejnej fazie (fazach?), obejmującej budowę nowych umocnień, wyłącznie w części północnej obiektu, to należy ją rozpatrywać w kategoriach czysto pragmatycznych. Takie

Bibliografia

Bugaj M., 2012 Nieinwazyjne badania osady obronnej w Wicinie, [w:] W. Blajer (red.), Peregrinationes archaeologicae in Asia et Europa Joanni Chochorowski dedicatae, Kraków, 135–147.

Bugaj E., Kopiasz J., 2006 Próba interpretacji zabudowy osady na stanowisku Milejowice 19, pow. wrocławski, [w:] B. Gediga, W. Piotrowski (red.), Architektura i budownictwo epoki brązu i wczesnych okresów epoki żelaza w Europie Środkowej, Biskupin-Wrocław, 175–207.

Fogel J., 1993 Uwagi o niektórych faktorach i szlakach wymiany ponadregionalnej na Pomorzu na przełomie epoki brązu i żelaza, [w:] Miscellanea archaologica Thaddaeo Malinowski dedicata quae Franciscus Rożnowski redigendum curavit, Słupsk-Poznań, 137–146.

Gediga B., 2010 Śląsk – regionalna prowincja kultury halszackiej, [w:] B. Gediga, W. Piotrowski (red.), Role głównych centrów kulturowych w kształtowaniu oblicza kulturowego Europy Środkowej we wczesnych okresach epoki żelaza, Biskupin-Wrocław.

Horst F., 1990 Zur Geschichte und Kultur der jungbronzezeitlichen Stämme im unteren Odergebiet, [w:] T. Malinowski (red.), Problemy kultury łużyckiej na Pomorzu, Słupsk.

Szamałek K., 2009 *Procesy integracji kulturowej w młodszej epoce brązu i początkach epoki żelaza na Pojezierzu Wielkopolskim*, Poznań.

Summary

Non-invasive investigation of a fortified settlement of the Early Iron Age and Early Middle Ages in Grodzisko

This paper presents the results of non-invasive archaeological investigations of a fortified settlement of the Early Iron Age and Early Middle Ages in Grodzisko, Pleszew Commune, Wielkopolska Province. Research, initiated by the Foundation for the Protection of Monuments in Poznań, was coordinated by Grzegorz Szczurek, MA, and conducted by Wiesław M. Małkowski, MA, and Miron Bogacki, MA, with the active support of the students of the University of Warsaw, within the research project ‘Grodzisko, Pleszew Commune – protection of heritage – science-popularisation of archaeology’, financed by the Ministry of Culture and National Heritage within the Prioritet 5 programme ‘Protection of archaeological heritage’ (see also: http://www.youtube.com/watch?v=rYFDA9f1yG0).

The purpose of the research project was to compile up-to-date documentation of the fortified settlement and its comprehensive non-destructive investigation. Non-invasive archaeological prospection, including aerial reconnaissance, geophysical measurements by means of magnetometer and measurements using GPS RTK positioning system, was carried out to aggregate data and updated information on the fortified settlement in Grodzisko in one system. The results of the examination – in the form of raster and vector graphics as well as geospatial databases have been presented in the formats of 2D maps and 3D models, prepared for processing as layers in the Land Information System (LIS, in Polish System Informacji o Terenie, SIT) according to the rules applied in the management of Geographic Information Systems (GIS). Geophysical prospection was carried out by means of caesium magnetometer (G 858 Magmapper by Geometrics and two-set GPS RTK TOPCON HiPER pro), interconnected with GPS RTK positioning system. Software for surface modelling and a system based on CAD and GIS tools were used for data analysis.

Cesium magnetometer measurement was carried out in a grid of north-south profiles, with a resolution of 10 samples per second (10 Hz). We used a variant of one – way prospection from south to north, with the profiles set every 1 m and probes every 0.5 meter.

Sets of measurement source data (in ASCII, BIN formats), presented in the material, contain precisely located values of magnetic field strength. The results of magnetic prospection present the current state of preservation of the study area in terms of the characteristics of the presence of magnetic anomalies in the context of the orthophoto based on aerial photography.

Over 4 ha of land have been examined by means of magnetic method. Point changes, the so-called dipole anomaly characterised by a strong polarity of poles, stand out in the plan. These anomalies, with the geometry of single points of distinct poles of field values, are related to the presence of metallic (ferromagnetic) objects deposited under the surface at different angles. When we look for substantial relics of structures to be expected at such site as the fortified settlement, in order to verify their location, we should identify complex linear anomalies characterized by logical, directional sequence of field changes. At least 14 such anomalies have been identified in the study area. They enclose specific spaces, making it possible to calculate the surface area they limit (Fig. 9). The list of registered linear anomalies, with a high degree of probability related to the fortified settlement in question, is given below:

1. Linear anomaly with a circumference of 340 m and the surface area of 0.6576 ha;
2a. Linear anomaly with a circumference of 426 m and the surface area of 1.1742 ha;
2b. Linear anomaly with a circumference of 476 m and the surface area of 1.5470 ha;
3. Linear anomaly with a circumference of 569 m and the surface area of 2.3059 ha (covering essentially the boundaries of the entire heap of the fortified settlement);
4a. Linear anomaly with a circumference of 202 m and the surface area of 0.3030 ha;
4b. Linear anomaly with a circumference of 323 m and the surface area of 0.7830 ha;
5a. Linear anomaly, 242 m in length;
5b. Linear anomaly, 110 m in length;
6. Linear anomaly, 4 m in width and 24 m in length;
7. Linear anomaly, 134 m in length and 9 m in width;
8. Linear anomaly, 11 m in length and 9 m in width;
9. Linear anomaly, 33 m in length;
10. Linear anomaly, 47 m in length.

In the southern part of the fortified settlement: noteworthy is the lack of an anomaly that would coincide with the hypothetical course of the woodeen core of the rampart excavated in 1973. Unburnt gridiron construction (konstrukcja rusztowa) was not reflected in diverse strength of magnetic field.
The excavated section of the rampart is situated between the suggested location of the residential area (the area comprised between the course of anomalies 1 and 2a; see below) and the linear anomaly 3 and partly 5a and 5b (fig. 9). Similarly, compact, multi-phase wooden structures of average width of about 20 m, deposited below the rampart of the second part of the fortified settlement (the northern side) are legible in the form of geomagnetic anomalies generally only near the external (anomaly 4b) and internal (anomaly 4a) border, where burnt relics of wooden structures together with the burnt, clayey sand were recorded (fig. 9, 12).

Geophysical equipment registered also structures corresponding to the location of archaeological excavation trenches set in the last forty years. Distinct are anomalies indicating the location of the 1990 excavation, whereas structures at the site of 1973 excavation have barely been signalled. Similarly, due to the shallowness of the 2004–2005 excavation trenches, located in the modern depression between the parts of the fortified settlement, where deep ploughing had already breached the wooden structures of the base of the rampart, their setting has not been clearly reflected in the observed geophysical anomalies.

We believe that a linear anomaly registered in the meadows adjacent to the fortified settlement (visible on the elevation model, too) may indicate the deposition of wooden (?) relics of another defensive structure beneath the surface, or, more likely, the structure of the road providing access to the settlement from the area above the fluvial terrace. Geomorphological analysis of areas adjacent to the fortified settlement indicates that it is a place naturally fitted for locating a crossing through inaccessible wetland/marshy land surrounding the elevation at which the settlement was established.

Evident in the south-western part of the fortified settlement is a concentration of three linear anomalies (No. 3, 5a, 5b). They probably designate the remains of the structure of the rampart/ramparts (e.g. wooden or stone strengthening of the lower part of the face of the rampart and the area immediately adjacent to it). Given the general rules of defensive arts, noteworthy is the micro location of this sphere of the fortified settlement, to which access seems relatively the easiest. More advanced defense systems, characterised by a higher degree of difficulty in case of any attempt to break through, are characteristic for most susceptible places.

In the north-western part of linear anomalies 4b and 4a, interpreted on the basis of excavated material as structures of the early medieval and Hallstatt ramparts, two breaks 4 m (anomaly No. 6) and 9 m (anomaly No. 8) wide have been registered. Since these are the only such distinct openings in the compact defence systems that do not result from previous archaeological research, we believe they should be circumspectly interpreted as gates.

The issue of the interpretation of distinctness in the magnetic field strength between linear anomalies 1 and 2a should be considered severally. This zone was excavated in 1973 on plots IV and partly III, within trench A. The discussed space coincides substantially with the layer IVB, in the roof zone full of fine charcoals, which are the source of the registered changes in the magnetic field strength in a regular form, centred along the structure of the ramparts. In this context, a hypothesis about the regularity of housing development at the settlement in Grodzisko during the Hallstatt period seems more plausible. It follows that the recorded anomaly 10–15 m wide could be related to the relics of a residential zone centred along the main perimeter of the defence structure. Since the excavations in this section did not produce distinct features, we may hypothetically suppose that houses were built in a framework construction, which is typically difficult to register during the exploration of layers and in this particular case was burnt, as indicated by a great number of charcoals in the layer.

Providing such an interpretation is correct, the area of an empty courtyard, including the northern zone of the structure destroyed by early medieval housing development (rampart, moat – fig. 9, anomaly No. 7) would amount to 6576 m² (the area enclosed by the outline of anomaly No. 1), whilst the surface of the entire interior of the fortified settlement enclosed by the course of the inner border of the wooden structure of the rampart amounted to 11.742 m² (anomaly No. 2a). Such a model of inner space organisation is well-known from the Hallstatt fortified settlements in Jankowo, Pakość Commune and Komorowo, Kazmierz Commune.

As regards the potential surface indicators of the early medieval stronghold, constructed on the basis of the course of linear anomalies, distinct is the presence of courtyard of the area of 0.27 ha. This value perfectly corresponds to the parameters known from other early Piast strongholds of southern Wielkopolska, where the area of usually circular courtyards amounts to 2–4 ares (e.g. in the nearby Taczanów, Pleszew Commune).

The outline of linear anomalies related to the Hallstatt phase at the settlement site (fig. 9, anomalies 4a, 4b, 2, 1) allows for the hypothetical consideration of their relations. The results of the previous excavations indicate that the fortified settlement functioned during HaC (the southern zone
excavated in 1973) and HaD (the northern zone excavated in 1990 and 2003–2004). We cannot rule out the possibility that the defense (isolating?) structure, transversal in relation to the whole ring, was erected already in the Early Iron Age, as suggested by, inter alia, a similar, uniform width of the space between anomalies 4a and 4b, which consists of the remnants of the ‘Lusatian’ and early medieval rampart. Whether both parts of the fortified settlement functioned at the same time is obviously another matter. If, however, we accept that the concept of a simple closure of the defence circuit appeared only in the next phase (phases?), including the construction of new fortifications only in the northern part of the structure, it should be considered in purely pragmatic terms. Such positioning of the defensive structures required the minimum of work and usage of building materials, and the relics of the fortified settlement of the first phase probably compensated the shortening of the length of the ramparts, thus the reduction of defensive qualities. The closing of the fortifications in a straight line also resulted in the reduction of the usage space within the ramparts, which may indicate other possible interpretations of the then function of the structure. In this context, the basic refugee/military role of the settlement seems only one of the possible interpretations, also due to its proximity to the main communication route and exposition qualities. In that regard worth considering is also the specific demonstrative role of the structure, as a clear signal of economic attractiveness to potential partners and neighbouring territorial structures. A smaller size of the younger fortified settlement corresponds well to the reduction of the parameters of the Lusatian fortified settlements in the subsequent phases of their occupation noted in the subject literature.

Owing to the discussed research project, the fortified settlement in Grodzisko, together with a site at Wicina, Jasień Commune, are the best non-invasively investigated ‘Lusatian’ fortified settlements in the country. Hopefully, other settlement sites, typically excavated on a very small scale, consisting in digging through the ramparts with a view to verifying the sites’ chronology, will shortly join this small group. It seems that the discussed extensive geophysical prospection together with complementary research may provide a valuable and low-cost source of knowledge on the fortified settlements of the Early Iron Age. We believe that the combination of modern non-invasive methods with the analysis and release of the results of the former excavations for a broader range of researchers, as in this volume, is the right direction for the development of studies on the defence structures of the Hallstatt period. The progress of these studies is, of course, first of all conditioned by the increased interdisciplinary excavation activity, necessarily preceded by a comprehensive non-destructive investigation. The working hypotheses formulated here on the basis of the registered geophysical anomalies provide the starting point for more effective planning of future excavations, which should verify the accuracy of the prospection and attempts to interpret its results.
Grodzisko z wczesnej epoki żelaza i wczesnego średniowiecza w Grodzisku gm. Pleszew, woj. wielkopolskie

W tomie:

Hanna Kóčka-Krenz
Wstęp

Wojciech Śmigielski, Grzegorz Szczurek
Wyniki badań wykopaliskowych przeprowadzonych w 1973 roku na grodzisku ludności kultury łużyckiej w Grodzisku

Jarosław Teske, Artur Różański, Grzegorz Szczurek
Wyniki badań wykopaliskowych przeprowadzonych w latach 2004–2005 na grodzisku z wczesnej epoki żelaza i wczesnego średniowiecza w Grodzisku

Marta Osypińska
Szczątki zwierzęce z badań wykopaliskowych na stanowisku nr 1 w Grodzisku

Wiesław Małkowski, Grzegorz Szczurek, Miron Bogacki
Badania nieinwazyjne grodziska z wczesnej epoki żelaza i wczesnego średniowiecza w Grodzisku

Agnieszka Skorupińska
Grodzisko nad Prosną – średniowiecze

Michał Bugaj
Grodziska w zasobach dziedzictwa archeologicznego kraju – uwagi na temat wartości, rozpoznania, ochrony i zarządzania tego rodzaju zabytkami

Wydawnictwo i Pracownia Archeologiczna PROFIL-ARCHEO
Magdalena Dzięgielewska
www.pracowniaprofil.pl